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A periodic polytype 66R was found to constitute part of a ZnS crystal. Oscillation photographs were 
taken with Cu K~ radiation. A test was applied to these data showing that the crystal was better approx- 
imated by the assumption of a perfect crystal (I~ IFI), than by that of a mosaic crystal (I~ IFI2). 

The method described by Dornberger-Schiff and Farkas-Jahnke in part I is applied to the experi- 
mental data and the result discussed. The homometric pair of polytypes with Zhdanov symbols (7753)3 
and (7735)3 gives a much better fit to the experimental data (traditional R value equal to 0.147) than 
any other polytype. 

Introduction 

In the first part of our contribution (Dornberger- 
Schiff & Farkas-Jahnke, 1970) the theoretical basis of 
a method for the direct determination of polytype 
structures of SiC- and ZnS-like polytypes from X-ray 
data was given, and the course of such a structure 
determination was demonstrated with the help of a 
hypothetical model. In this part we describe the ap- 
plication of this method to the determination of the 
stacking sequence in a real ZnS crystal. 

Experimental 

Fig. 1 shows the ZnS crystal under investigation. It is 
of irregular shape, and was grown from the vapour 
phase by a modified Frerichs-method (Kov~ics & 
Szab6, 1962). It was suspected that the clear region 
in the middle of the specimen which shows no streaks 
perpendicular to the c axis may be a region of one 
periodic polytype. This region has an extension of 
about 1 mm along the c axis of the crystal, occupying 
the whole cross-section. 

X-ray oscillation diagrams with the c axis as oscil- 
lation axis were taken, with an X-ray tube (Cu-anti- 
cathode) with line focus and a collimator slit giving 
an X-ray beam of cross section 20 mm by 0"2 mm at 
the position of the crystal (Fig. 2). In order to test the 
uniformity of the stacking sequence along the total 
length of the region, we took a set of photographs 
with the same oscillation period, shifting the crystal 
parallel to the c axis by 0.1 mm after each exposure. 
The intensities of the reflexions were the same on each 
pattern, within experimental errors. 

From the number and positions of the reflexions on 
the 02l row-line (orthohexagonally indexed) the poly- 
type was found to have a periodicity of 66 layers in 

the c direction and to have a rhombohedral lattice 
(66R). (The rhombohedral character follows from the 
fact that reflexions with indices k + l =  3n + 1 are ab- 
sent.) 

The intensities of the reflexions on each oscillation 
pattern were obtained from the blackening measured 
by a single light path photometer with the help of in- 
tensity strips. In order to reduce the errors in IS(k, l)12, * 
the intensities of reflexions on the row-lines 02/, 04/, 
and 151 with l from - 6 6  to +66  were measured. 
IS(k,l)l 2 values were calculated according to 

IS(k,l)[ 2= [F(hkl)IZ/IFo(hkl)l 2 (16/I) 

[equation (16) of part I], where Fo(hkl) denotes the 
structure factor of a hypothetical structure consisting 
only of one layer with Zn in 000 and S in 00zs within 
the real unit cell. ( Z s - 3 / 4 M =  3 /4 .66  in this case.) 
Mean values of IS(kl)l 2 which, according to equations 
(13) and (14) in part I, should be the same, were cal- 
culated. In this way it was hoped to reduce at least 
partly the influence of absorption which, because of 
the irregular shape of the crystal, could not be taken 
into account. 

In spite of this it turned out that no polytype se- 
quence was found by use of the method described in 
part  I, which would be in agreement with the ~ values 
obtained from this set of ISI 2 values, unless frequent 
errors in ~ up to I~obs-~eale[-~2, and some errors 
even > 2 were allowed for. The best fitting polytype 
still gave a value of R '=0 .38  for 

R'-- yr [ISob~l 2_ ISealel2l 
- S  I--Sob~[ '~ (1) 

and the sum of the squares of the differences in ~, was 

* F o r  an exp lana t ion  o f  the symbols  used, see par t  I. 

A C 26A - 3* 
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Fig. 1. The  ZnS crystal invest igated in polar ized light the c axis is parallel to the arrow. 

Fig.2.  Oscil lat ion pa t te rn  f rom the par t  of  the crystal m a r k e d  on Fig. 1. Oscil lat ion axis parallel to the c axis, Cu K radia t ion.  

To face p. 35 
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47.6, corresponding to a root-mean-square value of 
the differences in V of 1.2. 

We then realized, as a result of a remark by the ref- 
eree of part I, that the intensities in our case may be 
proportional to IFI rather than to IF[ z. 

To test which power of IF[ has to be taken as pro- 
portional to the intensities, sets of 4 intensity values 
corresponding to the same IS[ value were taken, one 
after the other, and the slope c~ of the straight line 
y = c~x + K calculated, where 

and 
y = log I +  log sin 20 - log (1 + I cos 201 °) 

x=log If01. 

Table 1. z~(m,p) values calculated from the observed 
intensities assuming Ioc IF[ 

m - 1 0 + 1  

P 
1 12.37 - 0 . 4 7  10"10 
2 7.70 4.85 9.44 
3 4.17 13.08 4.74 
4 9.60 4.12 8.27 
5 7.77 6-80 7-42 
6 5.42 8.90 7.67 
7 9.72 7.86 4-38 
8 4.96 5.27 11.76 
9 7.11 9-63 5.26 

10 11-20 4.79 6.00 
11 2.17 9-91 9.91 

According to equation (34) of part I, the values e and 
6 ought to be ---1, if the intensity is proportional to 
IFI, and -~2, if it is proportional to IF[ z. This calcula- 
tion was carried out for fi = 1 and for fi = 2 respectively, 
but the resulting slopes did not differ appreciably. For 
4 different sets the e values obtained were 0.3, 0.7, 0.6 
and 1.0 respectively. Thus e was assumed to be equal 
to 1. 

From the IS(kl)l z values calculated with c~ = 1 a new 
set of v(K,p) values was obtained, in the way described 
in part I; they were calculated from the corresponding 
rc values according to 

v(K,p)=rc(m,p) for m + p + K - O  (rood 3), (2) 

the zffm,p) values being calculated from the ISI z values 
according to 

N [ M-1 [S(ll)i z 2rc(m/3+lp/M)] z~(m,p) = ~- 1 + 2 ,S M--U---. cos 
1=0 

(18/1) 

As has been shown in (viii/I), ~(0,2) must necessarily 
be even. Besides, according to (x/I, iii/I) and (vii/I), 
for f l = l  (i.e. [S(1,I)I#0 for l = 3 n - 1 )  

- z~ (1 ,p )+rc (1 ,N-p ) -p+U (mod 3), (3) 

or for N = 2 2  

-zc(1,p)+zc(1,U-p)=p+ 1 (mod 3). (4) 

Thus, if we denote by zr0 the integral values chosen 
for n, and limit ourselves to pairs of values in agree- 
ment with (4) which lead to discrepancies 

[rff l, p) - zCo(1, p)]Z + [rc(1, N - p )  - rCo(1, N-p)]2 < 5 

only those pairs of no values listed in Table 2 need to 
be considered. 

Determination of [Tlu values from the ~ values 

As shown above, only the pair 

zc(1,2) = V(0,2) = 10 
re(l, 20)-- zc(0, 2)-- ~,(1,2)-- 4 

Table 2. Sets of  ~0(m,p) and gt(K,p) values for p =  
2, 3 , . . .  5, in accordance with the measured z~ values of  

Table 1 

Zro(m,p) v(K,p) 
m - 1  0 +1 K 0 1 2 

8 4 10 10 4 8 
7 6 9 9 6 7 

4 14 4 14 4 4 
5 12 5 12 5 5 

10 4 8 10 8 4 
8 5 9 8 9 5 

7 6 9 9 6 7 
8 7 7 7 7 8 
6 8 8 8 8 6 

10 6 6 6 6 10 

and the pair 
~,(0,2)=9 
~,(1,2)=6 

need be considered; these two cases were treated in 
turn. We propose to describe the treatment of the first 
case in greater detail and then to report on the result 
of considering the second case. 

For the first case it follows from Table 3(a) (part I) 
that 

[0]z=10, [ l l z=2 ,  [2]2=2, [3]2=8. 

For p = 3  (using equations of type (b) of Table 3, 
part I) 

[013+[413=10 [013+[113= 10 
[113+[513=2 [2]3+[3]3----2 
[ 2 ] 3 + [ 6 ] 3 = 2  [ 4 ] 3 + [ 5 ] 3 = 2  
[3]3 -I- [7]3 = 8 [6]3 + [7]3 = 8 

From Table 3(d) and (e) (part I) it follows that 
[113 = [4]3 > 0, and [3]3 = [6]3 > 0. 

Taking the sum of the rates of occurrence of numbers 
with reduced digital sum 0, 1, or 2, respectively, we 
obtain 
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~u(0, 3) = [0]3+[7]3 (5) 

9'(1,3) = 21113 + [2]3 (6) 

g(2, 3) = 2[3]3 + [5]3° (7) 

The sets (14,4,4), (12,5,5) and (13,6,3) are the only 
sets of ~,(K,3) in reasonable agreement with the zc 
values obtained from the intensities (see Table 2) and 
the conditions discussed above. 

For  these three different sets of ~u(K,3) values the 
discussion is summarized in Table 3. The [7]3 values 
are given which are in keeping with the set of  g(K, 3) 
values indicated at the top of the column and with the 
condit ion given in the last column. Contradict ions are 
indicated by a letter c. It  follows that  only the ~,(K, 3) 
values (14,4,4) do not  lead to contradictions and the 
values of  all [7]3 are uniquely determined as given in 
Table 5. F rom these values we obtain for the [7]4 the 
following relations: 

[014+[814=8 [014+[114=8 
[114+[914=2 [214+[314=2 
[214+[1014=0 [4]4+[5]4=0 
[314+[1114=2 [6]4+[7]4=2 
[414+[1214=2 [8]4+[9]4=2 
[514+[1314=0 [1014+[1114=0 
[614+[1414=2 [1214+[1314=2 
[714+[1514=6 [1414+[1514=6 

Further ,  f rom Table 3(e) (part  I) it follows that  

[114 = [8]4 > 0 and [7]4 = [1414 > 0 

and from the above relations" 

and 
[214=[414=[514=[1014=[1114=[1314=0 

[3]4=2,  [1214=2. 

Using the values of [7]4 obtained already, the equations 
for the ~,(K,4) values may  be simplified" 

~u(0,4)=[014+[714+[1114+[1314+[1414=[014+ 2[7]4 (8) 

9'(1,4)=[114+[214+[414+[814+[1514=21114+[1514 (9) 

9'(2,4)=[314+[514+[614+[914+[1014+[1214 
=4+[6 ]4+[9 ]4 .  (10) 

For  the ~u(K,4) values the sets (10,8,4) and (8,9,5) 
should be discussed and this is summarized in Table 4. 

Thus two sets of  [7]4 values are in reasonable agree- 
ment  with the ~u(K,4) values obtained from the ex- 
perimental  data  and from the [7]p values, for p_< 3 
deduced earlier. 

In a similar way 4 sets of  [7]5 values were deduced, 
being in agreement with the three sets of  ~u(K, 5) values 
(9,6,7), (8,7,6) and (6,6,10). The [7]~0 values thus ob- 
tained for p =  1 , 2 , . . .  5 are summarized in Table 5. 
The two sets of  [7]4 values are called I and II respec- 
tively and the four sets of  [7]5 values are denoted a 
to d. In Table 6 the ~u(K,p) values in agreement with 
the different cases are given. 

All possibilities starting from the ~u(K, 2) set (9, 6, 7) 
with discrepancies < 5 were also tested. The number  

Table 3. Determination of  the [7]3 values in agreement with the three sets of  ~(K, 3) values given at the top of  the 
columns and the conditions given in the last column 

[y]3 

g(0,3) 14 12 13 
~,(1,3) 4 5 3 
~u(2,3) 4 5 6 

[113 1 or 2 I or 2 1 equation (7) and [113>0 
[2]3 2 0 3 1 1 equation (7) 
[3]3 c* 2 c 1 1 [2]3 q- [3]3 = 2 and [3]3 > 0 
[5]3 -- 0 - c c [113 -'1- [ 5 ] 3  = 2 and equation (8) 

* c indicates contradiction. 

Table 4. Determination of  the [7]4 values in agreement with the two sets of  ~u(K, 4) values given at the top of  the 
columns and the conditions given in the last column 

[y]4 

[6]4 
[9]4 
[7]4 
[114 
[014 

[1514 

9'(0,4) 10 8 
tu(1,4) 8 9 
gt(2,4) 4 5 

0 0 o r l  
0 1 0 
2 2 1 
2 1 2 
6 c* 6 
4 - 5 

equation (11) 
equation (11) 
[6]4 + [7]4 = 2 

[114 q- [9]4 = 2 
[014 + [114 = 8 and equation (9) 
[7]4 -t- [15]4 = 6 and equation (10) 

* c indicates contradiction. 
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of these was considerably greater, and for those with 
the smallest values of 

Z {[rc(1,p) - rCo(1,p)]Z+[zc(1,N-p) - z~0(l, N - p ) ]  2 } 
p 

the R' values were calculated. The best-fitting polytype 
still had an R' value of 0"5 which is still bigger than 
some of  the discarded polytypes with ~u(K, 2) = (10, 4, 8). 

The close correlation between the sums of  discrep- 
ancies and R values justified those cases with large 
sums not being further pursued. 

Dur ing the deduction of possible [~,]~ sets we arrived 
at the following points:  

(a) The values for [?]p-1 alone suffice for a unique 
determinat ion of  the [~]~ values. A trivial example is 
the determinat ion of  the [~]2 values f rom the [~']1 values. 
Non-trivial  examples were actually found. 

(b) The values for [~']p-1 and of  ~u(K,p) suffice for 
a unique determinat ion of  the [~,]~. An  example is the 
deduction of  the [)']3 summarized in Table 3. 

(c) More than one set of  values [7]~ is compatible 
with the values for [~,]p-1 and for ~u(K,p). In this case 
all possibilities have to be pursued. 

(d) No set of values [?]p is compatible with the values 
for [~']v-1 and ~u(K,p). Then either another  set ~u(K,p) 
must be chosen, or another  set of  [:Y]p-I values. 

D e t e r m i n a t i o n  o f  p o l y t y p e s  in k e e p i n g  wi th  a 
g iven set  o f  I"/15 va lues  

Theoretically, this procedure for obtaining rates of  oc- 
currence (cq, a2,. • • ~ )  of longer and longer sequences 
could be continued until the length p of  sequences 
reaches the value N. In practice, another  mode of 
procedure is to be preferred, especially if the ~u values 
are known only within certain limits of error,  therefore 
making  it necessary to discuss several possibilities for 
any given p. 

In part  I we described how possible cycles could be 
built up f rom the knowledge of the [~1. . .c~]  values. 

Table 5. Sets of[7]p values for p = 1 , 2 , . . .  5 

Case I Ia lb Ic II lid 
K p 1 2 3 4 5 5 5 4 5 

7 
0 0 12 10 8 6 4 5 4 6 4 
1 1 10 2 2 2 2 1 2 2 2 
1 2 2 0 0 0 0 0 0 0 
2 3 8 2 2 2 2 2 2 2 
1 4 2 0 0 0 0 0 0 
2 5 0 0 0 0 0 0 0 
2 6 2 0 0 0 0 1 1 
0 7 6 2 2 2 2 1 1 
1 8 2 0 0 0 2 0 
2 9 0 0 0 0 0 0 
2 10 0 0 0 0 0 0 
0 11 0 0 0 0 0 0 
2 12 2 0 0 0 2 1 
0 13 0 0 0 0 0 0 
0 14 2 1 0 0 1 0 
1 15 4 1 2 2 5 1 
1 16 2 1 2 2 
2 17 0 1 0 0 
2 18 0 0 0 0 
0 19 0 0 0 0 
2 20 0 0 0 0 
0 21 0 0 0 0 
0 22 0 0 0 0 
1 23 0 0 0 0 
2 24 2 2 2 2 
0 25 0 0 0 0 
0 26 0 0 0 0 
1 27 0 0 0 0 
0 28 2 2 2 1 
1 29 0 0 0 0 
1 30 1 2 2 1 
2 31 3 2 2 4 

Table 6. Sets of  g/(K,p) values corresponding to the sets o f  [~,]~ values of  Table 5 

Case I Ia Ib lc II Ild 
p 1 2 3 4 5 5 5 4 5 

K 
0 12 10 14 10 9 9 8 8 6 
1 10 4 4 8 6 6 8 9 6 
2 0 8 4 4 7 7 6 5 10 
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We start from any arbitrary sequence 0~1,0~2...0~lo with 
[cqe2... c~] > 0. It must necessarily be followed either 
by a sequence cq, c~3...c~v0 or by a sequence c~2,c~3... 
c~l. If one of the rates of occurrence [c~2...c~0] or 
[c~2...erl] is equal to zero, then the next following 
sequence is uniquely determined. If both are ¢ 0 then 
there are two possibilities; i fp  is sufficiently large, the 
number of sequences for which such ambiguities occur 
will not be very large. 

Let us now describe this mode of procedure in terms 
of our decimal equivalent notation, Y. Let el. • • c~p cor- 
respond to a decimal number ?0. If y0<2P-1, then 
el = 0. Leaving this digit out, and shifting the sequence 
by one place to the left means multiplying Y0 by a fac- 
tor 2. Thus the two decimal equivalents which may 
follow 7o are 2y0, and 2)'o+ 1. If, on the other hand 
7o-> 2r-l ,  then cq = 1. Leaving this digit out and shifting 
the rest of the sequence one place to the left, means 
subtracting 2~ -I from 70 and multiplication by a fac- 
tor 2. In this case the two decimal equivalents which 
may follow Y0 are 2()'0-2p-1) and 2()'0-2~-1)+ 1. If, 
therefore, [)'o]~ > 0, we may discuss the following cases: 

[27']v [2)"+ 1]:, 
I 0 0 

II 0 + 
III + 0 
IV + + 

where 7' = Y0 if )'0 < 2 ~-1 and )" = 70- 2 p-l, if Y0 -> 2v-1, 
and where '0' stands for equal to zero, and ' + '  for 
bigger than zero. 

Case I would be in contradiction to the presupposed 
condition [7]~ > 0. In cases II and III the decimal equi- 
valent of the sequence 71 following the sequence 70 is 
uniquely determined. For this sequence )'1 we may 
again find out whether the sequence 72 following it is 
uniquely determined. In this way, we are led from 70 
to 71 to 72... until either we arrive back at 70, or case 
IV occurs. In order to avoid using any sequence more 
often than is indicated by its rate of occurrence it is 
advisable to mark off any sequence as it is used. If 
we arrive back at 70 after N steps, the sequence of ~'v 
obtained constitutes a solution to the problem. If, 
however, we arrive back at Y0 after a smaller number 
of steps than N, then the set of )'p values corresponds 
to two or more polytype structures with lengths of 
cycles N1, Nz.. .  where Z' Nj is equal to N. Such sets 

J 

of Y values thus do not constitute a solution to our 
problem, because the length N of the cyclic structure 
is known from the position of the X-ray reflexions. 

We came across examples of this kind when trying 
to find a polytype in keeping with rc values obtained 
under the assumption that the intensities are propor- 
tional to the IFI 2 values. Then we found that (among 
others) the sets of rates [715 given in Table 7 are in 
keeping with the ~u(m,p) values for p < 5 (within given 
limits of error). Starting from 70=4 we obtain unam- 

biguously the following series of y,: 

4 9  18(4 ) .  

The last y value, Y3 = 4 ,  is put in brackets to indicate 
that, because [4]5= 1, the decimal equivalent 4 has 
already been used for )'0. Thus the series of y, closes 
upon itself, and a closed cycle with N1=3 results. 
Similarly, starting off from y0 = 13 the closed cycle 
13 27 22 (13) with Nz=3 results unambiguously. Thus 
the set of [Y]5 values given in Table 5 is compatible 
only with a number of subcycles and cannot be the 
basis for the solution of the problem. 

Table 7. Set of [715 values leacfing to subcyeles 
~' b']5 ~' [y]5 
0 3 17 0 
1 1 18 1 
2 0 19 0 
3 1 20 0 
4 1 21 0 
5 0 22 1 
6 0 23 0 
7 1 24 1 
8 0 25 0 
9 1 26 0 

10 0 27 1 
11 0 28 1 
12 0 29 0 
13 1 
14 0 30 1 
15 1 31 5 
16 1 

If at a certain 7v case IV occurs, i.e. the sequence 
7v+1 is not uniquely determined, we note the two pos- 
sibilities for 7~+1 and take each of them as a starting 
point for building up another part of the cycle. 

As an example we take the sets of [)']5 values ob- 
tained from IS[ 2 values after deciding to take e =  1, 
and given in Table 5, marked (a). Starting from the 
70 value 1, the series (A) of y~ values is obtained 

(A) 1, 3, 7, (I 4 ) 

where (I 4) denotes the first ambiguity. Series (A) oc- 
t,. r 

curs twice. Starting from 7o--- 14 and 70 = 15 we obtain 
the series (B) and ((2) respectively 

(B) 14, 28, 24, 16, (o) occurring once 
(C) 15 r30) occurring once k31 

Similarly 

(D) 

and 

30, 28, 24, 16, (0) occurring once 

(E) 31 (]o) occurring 3 times and 

(F) 0 (o) occurring 4 times. 

Because (A) occurs twice, it is more convenient to 
start with (B), say. (B) may either be followed directly 
by (A) or by (A) after (F), or after up to 4 repeats 
of (F). After (A) only (C) can follow, because (B) 
(occurring only once) has already been used. ((2) may 
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either be followed directly by (D) or by (D) after (E) 
or up to 3 repeats of (E). 

After (D) (A) may follow (of which only one has 
been used) either directly, or after up to 4 repeats of 
(F). Thus we obtain the following compound sequence: 
B F a A C E ~ D Fz A with 0 < f i < 4 ,  0 < a < 3 ,  0 < Z < 4 .  
The last sequence (A) may then be followed by the 
first sequence (B) to close the cycle. 

All sequences are used up in one cycle if d + Z = 4  
and ~=3. Thus 5 cases have to be discussed, corre- 
sponding to d = 0 , 1 . . .  4. 

The deduction of a binary corresponding to a given 
succession of ~,p values is very simple indeed. Even y 
values correspond to binaries whose last digit is 0 and 
odd ? values to binaries whose last digit is 1. We 
obtain the binary of the whole cycle of N digits if 
we put a digit '0' for any even, and a digit '1' for any 
odd, ~'~o value. 

In this way the following cyclic binaries and Zhdanov 
symbols are obtained: 

for 6-- 0 0000111111100000000111 (4783)3 
6-- 1 0000011111110000000111 (5773)3 
6 = 2 0000001111111000000111 (6763)3 
d = 3  0000000111111100000111 (7753)3 
6 = 4 0000000011111110000111 (8743)3 

Those for d = 0 and 6 = 4 and those for d = 1 and fi = 3 
respectively, are homometric structures: there is no 
possibility of distinguishing between them by diffrac- 
tion experiments, because they would lead to exactly 
the same IF(hkl)l z values (see Appendix to part I). 

In a similar way other sets of [~]5 values which led 
to ~ values in reasonable agreement with those ob- 
tained from the intensities were used to obtain other 
possible polytype sequences. Tests were carried out for 
all of them to see whether the ~,(K,p) values for p > 5 
were also in agreement with the corresponding ex- 
perimental ~, values and the homometric polytype pair 
with d =  1 and 3 was found to give the best all round 
tit. 1812 values were then also calculated for these poly- 
types and the R' values according to (1). 

The Zhdanov symbols for some of the polytypes 
obtained in this way and the corresponding 

N 
Z lrffl,p)obs- zffl,p)ealel z= Z IA~I 2 

p=l  

are given in Table 8, together with the R' values cal- 
culated according to (1). 

Table 8. Values of  R' [calculated according to equation 
(1)] and of Z [A~lZ for polytypes in keeping with the [?]5 

values deduced 

Zhdanov symbol 
of polytype R' Z Iztrrl z 

(4783)3; (8743)3 0"39 33 
(5773)3 ; (7753)3 0"176 18 
(6763)3 0.52 147 
(7339)3 ; (9337)3 0"565 135 

For all other polytypes (not given in this Table) the 
R' and L" [Azt[ z values were also larger than 0.35 and 
30 respectively. As Table 8 shows, only the homo- 
metric pair (5773)3 (3775)3 gave the favourable R' and 
Z [Az~] 2 values. Therefore one polytype of this pair has 
to be regarded as the polytype present in our crystal. 

The conventional 'reliability index', 

R= Z, IIFobsl -- Ireaaell/ 27 IFobsl, 

calculated for this case was found to be equal to 0-147. 
In Table 9 the IS(k,l)[ values obtained from the 

measured intensities are given alongside those calcu- 
lated for the polytypes (5773)3 and (7834)3. As to be 
expected from the values of R, R' and Z IA~I z, the 
polytype (5773)3 shows very good agreement between 
calculated and observed values. Although for the poly- 
type (7834)3 there exist serious discrepancies, especially 
for the reflexions with l equal to 8, 38, 50 and 59, these 
discrepancies seem to us far less aggravating than those 
tolerated in some earlier polytype determinations car- 
ried out by trial and error or by the method described 
by Tokonami (1966). We may note that the reflexion 
with l=23  (the strongest observed reflexion) also has 
the largest calculated ISI value and that the six re- 
flexions with l=20,  23, 29, 41, 44 and 47, which are 
the only reflexions with observed ISI values larger than 
6.10, are the only reflexions with calculated ISI values 
larger than 5.60. 

Table 9. IS(l,/)[ values obtained from observed inten- 
sities and calculated for two essentially different poly- 

types in order of  decreasing IS[obs values 

l ISlob~ 151(7735)3 151(7834)3 
23 10"54 10"54 11 "00 
29 8"51 6"53 5-70 
41 8.39 7.51 9.38 
20 7"49 6.80 7.31 
47 7-02 7.32 6"03 
44 6.21 5"77 6-02 
38 6"07 5"11 0"87 
17 4"44 3"78 3.81 
14 3.42 3.02 2-64 
35 3"38 _~ 15 3.65 
56 2"77 2"65 0.38 
32 2.65 2-74 5"17 
53 2.49 2.19 1.71 
8 1"61 1"55 0"78 

11 1.58 1 "64 3"02 
26 1"45 1"70 2.13 
2 1" 12 1 "22 1.44 

50 0"95 1"22 4"84 
5 0-63 0"89 0"35 

62 0"55 0"89 0"53 
65 0"45 0"84 0-76 
59 0.17 0"45 2.31 

If, in our case, we had obtained the polytype (7834)3 
by trial and error methods but had failed to obtain 
the polytype (7753)3, we might well have been content 
with the agreement achieved and taken this polytype 
as having been determined. Experience with this poly- 
type has thus strengthened our opinion that: 
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(i) intensities measured quantitatively and with suf- 
ficient accuracy are needed for a reliable determination 
of a polytype unless its period is quite small (systematic 
errors have to be allowed for); 

(ii) a method is needed which gives all polytypes in 
reasonable agreement with the observed data. 

We believe that our method meets this requiIement. 
These views are confirmed by Gomes de Mesquita 
(1969) who successfully applied our method to the 
determination of a 120R polytype of SiC. In this case 
the R value obtained was 6.6% and was further re- 
duced to 5.9% by allowing for secondary extinction. 
For comparison, the observed and calculated inten- 
sities obtained by Tokonami (1966) in his test example 
of a 96R polytype are given in Table 10, with the inten- 
sities again arranged in order of decreasing observed 
values. 

Table 10. Intensity values observed and calculated by 
Tokonami (1966) for his test example, arranged in order 

of decreasing Iobs values 

l Iobs ~1~ I Gbs Galo 
22 128 22 28 16 8 
31 96 60 82 16 6 
79 96 72 88 16 1 

Table 10 (cont.) 

l lobs Ieaae l lobs Ieale 
46 64 31 40 8 11 
64 64 289 43 8 0 
49 64 256 67 8 0"6 
34 64 ! 26 73 8 0"4 
37 64 36 85 8 0 
16 64 27 91 8 1 
70 64 0 1 0 0" 1 
10 32 5 4 0 0"2 
25 32 19 52 0 12 
67 32 4 55 0 0"9 
19 32 21 58 0 0"1 
7 16 2 61 0 0"7 

13 16 11 94 0 0"7 

We would like to express our thanks to Mr P. Kov~ics 
and Mr E. Lendvay who kindly supplied the crystals 
used in our experiments. 
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Complex Lattice Potentials in Electron Diffraction Calculated for a Number of Crystals 
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Structure potentials, Vg, and absorption potentials for 100 keV-electrons are given in tabulated form 
for almost all monatomic crystals with elements Z=  3 to 90 and for a number of crystals of the rock-salt 
type. The absorption potentials are given in the form of the Fourier coefficients Cto~ of the Yoshioka 
imaginary potential for excitation of crystal electrons and excitation of phonons at the temperatures 
20, 93 and 293 °K. All computations are based on numerical Hartree-Fock-Slater atomic radial func- 
tions by Herman & Skillman (Atomic Structure Calculations. Englewood Cliffs: Prentice Hall, 1963). 
The calculations show that the ratio CSo~(el)/Vg, where C~g(el) refers to excitation of single crystal elec- 
trons, lies between 0.005 and 0.012 for the lower reflexion vectors g and practically all Z. In contrast 
to this the ratio C~og(phonon)/Vg is much larger and increases about linearly with Z, for a given g. 

1. Introduction 

The scattering of fast electrons in crystals can be under- 
stood in terms of a complex periodic potential by 
which the electrons are supposed to be diffracted. Its 
real part consists of the electrical potential of the crystal 
atoms plus their dynamical polarization induced by 
the passing external electrons, while the imaginary 
part represents the inelastic scattering suffered by these 
electrons during passage (Yoshioka, 1957). 

Calculations of the imaginary crystal potentials have 
been done on the basis of the Thomas-Fermi atomic 
model for MgO (Yoshioka, 1957) and later, for Li, 
Be, Ne, A1 and Cu by use of Hartree-Fock atomic 
functions (Whelan, 1956a). In these two papers the 
excitation of the tightly bound crystal electrons was 
dealt with. This mechanism, however, proved to be 
too weak to fully account for the experimental anoma- 
lous absorption effects, and it was soon found that the 
thermal diffuse scattering (phonon excitation) is the 


